Publications 2017

All  |  2020  |  2019  |  2018  |  2017  |  2016  |  2015

  1. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. Kuehne SA, Dempster AW, Collery MM, Joshi N, Jowett J, Kelly ML, Cave R, Longshaw CM and Minton NP. J. Antimicrob. Chemother., (December 2017) 15. DOI: 10.1093/jac/dkx486.
  2. 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16. Alagesan S, Minton NP and Malys N. Metabolomics, (December 2017) 14:9. DOI:10.1007/s11306-017-1302-z.
  3. Improving gene transfer in Clostridium pasteurianum through the isolation of rare hypertransformable variants. Grosse-Honebrink A, Schwarz KM, Wang H, Minton NP and Zhang Y. Anaerobe, (December 2017) 48:203-205. DOI: 10.1016/j.anaerobe.2017.09.001.
  4. Multi-timescale analysis in synthetic biology: a kinetic model for 3-hydroxypropionic acid pro- duction via betaalanine. Dalwadi MP, King JR, and Minton NP. J. Math. Biol., (November 2017) DOI: 10.1007/s00285-017-1189-3
  5. Mathematical modeling of chemical agent removal by reaction with an immiscible cleanser. Dalwadi MP, O’Kiely D, Thomson SJ, Khaleque TS, and Hall CL. SIAM J. Appl. Math., (November 2017) 77(6);1937–61. DOI: 10.1137/16M1101647.
  6. The effect of weak inertia in rotating high-aspect-ratio vessel bioreactors. Dalwadi MP, Chapman SJ, Oliver JM and Waters SL. J. Fluid Mechanics, (November 2017) 835;674–720 DOI: 10.1017/jfm.2017.760.
  7. Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator. Hanko EKR, Minton NP and Malys N. Sci. Rep., (May 2017) 7:1724. DOI: 10.1038/s41598-017-01850-w.
  8. Development of Clostridium difficile R20291ΔPaLoc model strains and in vitro methodologies reveals CdtR is required for the production of CDT to cytotoxic levels. Bilverstone TW, Kinsmore NL, Minton NP and Kuehne SA. Anaerobe(April 2017) 44:51-54. DOI:10.1016/j.anaerobe.2017.01.009.
  9. Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum. Schwarz KM, Grosse-Honebrink A, Derecka K, Rotta C, Zhang Y and Minton NP. Metab Eng., (March 2017) 40:124-137. DOI:10.1016/j.ymben.2017.01.009
  10. Microbial solvent formation revisited by comparative genome analysis. Poehlein A, Solano JD, Flitsch SK, Krabben P, Winzer K, Reid SJ, Jones DT, Green E, Minton NP, Daniel R and Dürre P. Biotechnol Biofuels, (March 2017) 9;10:58. DOI:10.1186/s13068-017-0742-z.
  11. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD and Minton NP. Metab Eng., (March 2017) 40:104-114. DOI:10.1016/j.ymben.2017.01.007.
  12. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Wen Z, Minton NP, Zhang Y, Li Q, Liu J, Jiang Y and Yang S. Metab Eng.(January 2017) 39:38-48. DOI:10.1016/j.ymben.2016.10.013.
  13. Development and implementation of rapid metabolic engineering tools for chemical and fuel production in Geobacillus thermoglucosidasius NCIMB 11955. Sheng L, Kovács K, Winzer K, Zhang Y and Minton NP. Biotechnol Biofuels(January 2017) 3;10:5. DOI:10.1186/s13068-016-0692-x.

 

All  |  2020  |  2019  |  2018  |  2017  |  2016  |  2015